Your search
Results 18 resources
-
The welfare of people in the tropics and sub-tropics strongly depends on goods and services that savanna ecosystems supply, such as food and livestock production, fuel wood, and climate regulation. Flows of these services are strongly influenced by climate, land use and their interactions. Savannas cover c. 20% of the Earth's land surface and changes in the structure and dynamics of savanna vegetation may strongly influence local people's living conditions, as well as the climate system and...
-
Abstract Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on...
-
Abstract Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on...
-
Abstract Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on...
-
Abstract Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on...
-
Abstract Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on...
-
Abstract Recent IPCC projections suggest that Africa will be subject to particularly severe changes in atmospheric conditions. How the vegetation of Africa and particularly the grassland–savanna–forest complex will respond to these changes has rarely been investigated. Most studies on global carbon cycles use vegetation models that do not adequately account for the complexity of the interactions that shape the distribution of tropical grasslands, savannas and forests. This casts doubt on...
-
Abstract. Vegetation responses to changes in environmental drivers can be subject to temporal lags. This implies that vegetation is committed to future changes once environmental drivers stabilize; e.g., changes in physiological processes, structural changes, and changes in vegetation composition and disturbance regimes may happen with substantial delay after a change in forcing has occurred. Understanding the trajectories of such committed changes is important as they affect future carbon...
-
Abstract. Vegetation responses to changes in environmental drivers can be subject to temporal lags. This implies that vegetation is committed to future changes once environmental drivers stabilize. Understanding the trajectories of such committed changes is important as they affect future carbon storage, vegetation structure and community composition and therefore need consideration in conservation management. In this study, we investigate whether transient vegetation states can be...
-
Savanna TC Forest TC Abg.tree biomass C3:C4 grass ratio
-
Africa's protected areas (PAs) are the last stronghold of the continent's unique biodiversity, but they appear increasingly threatened by climate change, substantial human population growth, and land-use change. Conservation planning is challenged by uncertainty about how strongly and where these drivers will interact over the next few decades. We investigated the combined future impacts of climate-driven vegetation changes inside African PAs and human population densities and land use in...
-
Climate change is challenging the ability of protected areas (PAs) to meet their objectives. To improve PA planning, we developed a framework for assessing PA vulnerability to climate change based on consideration of potential climate change impacts on species and their habitats and resource use. Furthermore, the capacity of PAs to adapt to these climate threats was determined through assessment of PA management effectiveness, adjacent land use, and financial resilience. Users reach a...
-
Abstract Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and ecosystem services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model (aDGVM), which was originally developed and tested for Africa, to quantify sources of uncertainties in simulated African potential natural vegetation towards the end of the 21st century. We forced the aDGVM with regionally downscaled high‐resolution climate scenarios based on an ensemble of six general...
-
<p><span><span>On the background of increasing welfare and continued population growth, there is an ever-increasing pressure on land and other natural resources in many parts of the world. The situation is, however, particularly severe in the drylands of Sub-Saharan Africa. Southern African landscapes, composed of arable lands, tree orchards and rangelands, provide a range of important ecosystem functions. These functions are increasingly threatened...