Your search
Results 7 resources
-
Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved germplasm with tolerance to drought and heat stress and improved management practices. Adapting maize systems to future climates requires the ability to accurately predict future climate scenarios in order to determine agricultural...
-
Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved germplasm with tolerance to drought and heat stress and improved management practices. Adapting maize systems to future climates requires the ability to accurately predict future climate scenarios in order to determine agricultural...
-
Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved germplasm with tolerance to drought and heat stress and improved management practices. Adapting maize systems to future climates requires the ability to accurately predict future climate scenarios in order to determine agricultural...
-
Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved germplasm with tolerance to drought and heat stress and improved management practices. Adapting maize systems to future climates requires the ability to accurately predict future climate scenarios in order to determine agricultural...
-
Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved germplasm with tolerance to drought and heat stress and improved management practices. Adapting maize systems to future climates requires the ability to accurately predict future climate scenarios in order to determine agricultural...
-
Given the accumulating evidence of climate change in sub-Saharan Africa, there is an urgent need to develop more climate resilient maize systems. Adaptation strategies to climate change in maize systems in sub-Saharan Africa are likely to include improved germplasm with tolerance to drought and heat stress and improved management practices. Adapting maize systems to future climates requires the ability to accurately predict future climate scenarios in order to determine agricultural...
-
In southwest Asia, the accelerated impact of human activities on the landscape has often been linked to the development of fully agricultural societies during the middle and late Pre-Pottery Neolithic B (PPNB) period (around 10.2–7.9 ka cal. BP). This work contributes to the debate on the environmental impact of the so-called Neolitisation process by identifying the climatic and anthropogenic factors that contributed to change local and regional vegetation at the time when domesticated...