Your search
Results 19 resources
-
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive...
-
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive...
-
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive...
-
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive...
-
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive...
-
The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate...
-
The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate...
-
The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate...
-
The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate...
-
The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate...
-
The East African region exhibits considerable climatic and topographic variability. Much spatial and temporal variation in the response of different crops to climate change can thus be anticipated. In previous work we showed that a large part of this variation can be explained in terms of temperature and, to a lesser extent, water effects. Here, we summarise simulated yield response in two crops that are widely grown in the region, maize and beans, and investigate how the impacts of climate...
-
Climate change will have significant impacts on agriculture, particularly in East Africa where there is such variation in topography and climate. Modelling studies can help to show where these impacts may be largest, to help guide adaptations to ensure food security in the coming decades. Results suggest that crop yield reductions may be expected over 50% to 70% of the area simulated. At the same time, highland areas in parts of the region may see increases in yield potential, which could...
-
Climate change impacts food production systems, particularly in locations with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as land cover/land use change (LCLUC), can influence regional climate dynamics. Biophysical factors such as topography, soil type, and seasonal rainfall can strongly affect crop yields. We used a regional climate model derived from the Regional Atmospheric Modeling System (RAMS) to compare the effects of projected future GHG and future LCLUC...
Explore
Publication year
- Between 2000 and 2025 (19)